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Linearized slip flow past a semi-infinite flat plate 

By J. A. LAURMANN 
Nationel Aeronautic8 and Spaca Adminietration, Amee Reeearch Centre 

Moffett Field. California 

(Received 4 October 1960 and in revised form 21 Februery 1961) 

Incompressible slip flow past a semi-infinite flat plate at zero incidence is treated 
in terms of the linearized viscous flow equations. A formal solution is obtained 
using Fourier transforms and the Wiener-Hopf technique. Explicit inversion 
of the transform is not possible, but asymptotic expansions are discussed. Them 
reveal the inadequacy of boundary-layer theory in predicting the nature of the 
solution, even at the plate surface. For example, the local shear forces on the 
plate are significantly different from boundary-layer values, even far downstream, 
where slip effects are small. The boundary-layer limit is approached as the Rey- 
nolds number based on the mean free path or, equivalently, the free-stream Mach 
number tends to infinity. 

1. Introduction 
The first eatimate for the effect of slip on the flow over a flat plate was made in 

1949 by Donaldeon. Since then numerous refinements and extensions, of which 
the present paper is one, have been made. Unfortunately, from the point of view 
of the theoretician working on the subject, experimental confirmation of the 
predictions of these analyses has not been forthcoming. Thus, it  appears today 
that in the most important cases of practical interest, namely, in hypersonio 
low-density flows, slip effects are masked by shock-wave-boundary-layer inter- 
actions effects and it is even claimed (Probstein 1960) that slip effects may never 
be significant in such cases. In spite of this, the more academic interest in the 
phenomenon of slip flow persists and it seems desirable to be able to treat the 
low-speed incompressible case more carefully, for it is in this regime that con- 
clusive comparisons of theory and experiment can be made. 

The present analysis, therefore, is an attempt to solve completely the slip-flow 
problem for incompressible flow over a flat plate. No restriction is placed on the 
magnitude of the slip velocity 

at the plate surface, y = 0. Here au/ay is the normal velocity gradient, A is the 
mean free path and a, is a constant. This boundary condition on the surface 
velocity, aa derived from kinetic theory, holds strictly only for small departures 
from continuum flow, i.e. for small values of the slip velocity u', and most work 
has been restricted to the study of small perturbations about zero-slip boundary- 
layer solutions (Schaaf & Chambd 1967). The possibility exists, however, that 
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the dip condition has an extended range of validity (Laurmann 1958; Sherman & 
Talbot 1968; Yang & Lees 1956), holding not only for small values of the mean 
€fee path A, but also for arbitrary large departures from no-slip flow, and it is 
thh viewpoint that provides the interest in the type of solution considered hem. 
Indeed, the need for the more general approach is demonstrated by the result, 
derived below, that the low-speed caae cannot be handled correctly in terms of 
boundary-layer theory, even far downstream where slip effects become relatively 
mall. 

In view of these observations it would clearly be desirable to analyse the slip- 
Bow problem using the full NavierStokes equations. However, since these 
equations have not yet been solved even for the simpler zero-slip w e ,  we will be 
satisfied here to treat the problem in terms of the linearized Oseen model, which 
we anticipate will contain most of the essential features of the full EOlUtiOn. 

2. Formulation of the problem 
We consider the two-dimensional incompressible Oseen equations 

in which A is the hplacian operator (a2/ax2) + (a2/ay2); U is the free-stream velo- 
oity, directed along the z-axis; u and v are perturbations from this velocity in the 
2- and y-directions, respectively; and v is the kinematic viscosity. The boundary 
conditions are taken aa 

u,v  -+ 0, y -+ ao, 

and 

v = 0, J 

where h is the mean free path and the coefficient a, in the slip-boundary condition 
is a numerical constant whose value depends on the plate reflexion coefficient c : 

a, = (2 - cr)/cr, (2.3) 

80 that, for perfectly diffuse reflexion, a, = 1. 
To solve the system of equations (2.1), under boundary conditions (2.2), we 

construct the general solution in terms of an integral of the fundamental solutiont 
of (2.1). A detailed discussion of the fundamental solution of the linearized flow 
equations haa been given by Lagerstrom, Cole & Trilling (1949). They find that 
it can be expressed aa the sum of three terms, 

v, = v,+v,+v,* (2.4) 

t Given 8 differentid form LLu] ZA,,(a*u/az,az,), the function K ( r ,  y; 6, q )  such that 
L[K(s,  y ; 6, q ) ]  = d(z - 6, y - q) ,  where d is the Dirac delta function, is called the funda- 
m e d  solution of L[u]. 

0-2 
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where, in the incompressible caae, 

Here r = (z2 + ya)* and KO is the modified Bessel function of zero order; v1 is 
the velocity of the so-called longitudinal wave and satisfies Laplace’s equation. 
In  the sense of hgerstrom & Cole (1955), it is the ‘outer’ solution for the flow. 
The ‘inner’ part, equal to v2 + v,*, is the solenoidal ‘transverse wave ’ and in- 
cludes all the viscous effects. However, as shown by Lagerstrom et al. (1949), 
v: is irrotational and the vorticity is given entirely by v2. Thus the latter com- 
ponent corresponds to the boundary layer, or at least to the vorticity boundary 
layer. However, in general, and in particular for our problem near or at the 
leading edge, significant contributions to vo are made by all three componenta 
and it is not possible to represent the flow field close to the body by only the 
tranaverae wave or a part of it. 

We now propose as the general solution 

wheref(t) is an unknown distribution function. For convenience we define 

From the properties of fundamental solutions, it  follows that, when y = 0, 

F(t)  = exp ( - U t / a v ) f ( t ) .  (2.7) 

(2.8) 
au au u 
a Y  a Y  

21 = 0, - = 0 (z < O), - = +;zv$(x) (5 > 0) ;  

in the last equation the positive sign holds for y 3 0 from above and the negative 
sign for y 3 0 from below. Comparing (2 .2)  and (2.8) we see that all the boundary 
conditions are satisfied automatically by (2 .6) ,  except for the slip condition, which 
requires that 

If we now combine (2 .6)  and (2.9),  we obtain 
u+ u = a 1 ( h U / 2 v ) f ( x )  (y = 0) .  (2.9) 

which is an integral equation for the determination of P(t) .  

3. Transformation of the integral equation 
In 92  the problem was reduced to the solution of the integral equation (2.10). 

Thia equation is of the Wiener-Hopf type and there are standard methods of 
solution based on the use of the Fourier transform (Noble 1958). 

Study of the equation shows that, in order to obtain existence of the Fourier 
transforms in a finite strip of the transformed w-plane, we need to introduce a 
convergence factor exp ( - ctlx-tl) ,  a constant, in the Grst (potential) term of 
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the integral. After the nature of the solution in the w-plane has been studied, 
we can let a +. 0. Thus, we write 

In order to be able to use the convolution theorem for Fourier transforms, 
we must modify (3.1) to hold for all x. Hence we introduce 

u-(x)  = (3.2) 

end define 

(3.3) F+(4 = 0 (x < 0).  
Then (3.1) becomes 

for allx. (3.4) 

Equation (3.4) is in the form needed for application of the Fourier transform. 
We define 

F[~(x)]  = g ( ~ )  = - jm eimg(x)dx, (3.5) 

and in general g(w) will be regular in some interval 7- < 7 < 7+, where w = cr + i ~ .  
Applying (3.6) to the integral equation (3.4), and using the convolution theorem 

(2n)i --m 

we get 

[: ( :; -exp ---aIxl) u x  +im ~ X + - - - F + ( ~ ) F  1 'Im (2744 - m  U+exp(-% 1 (27r)) 

u Ulxl a AU- 
- 2v -KO( x) - sgn (x) K ,  (v)] = k F + ( w )  + Z- (w). (3.6) 

The values of the various transforms involved in (3.6) and their ranges of 
existence are as follows: 

(iw-;)-' (7 > -;); (3.7) 



(3.10) 

t I 

1.- 

k i  

-i-iA 

Fr~rrap: 1.  region^ of analyticity of the tern of the transformed equation. 

Substituting these results into (3.6) we get 

~ + ( w )  [:tan-' [ (w +g) /a) + i a,hU - ( ( w  - g ) / ( w  + 3 )"I 
= J! ~ ( w + 9 - ' - 2 i ~ . i - ( w ) .  (3.11) 

Finally, if we putt - 

2v Uh Ua 
U 2v ' W = - w ,  A = a  l y - ,  A = -  (3.12) 

then P+(W) - +iA-(-) w - i  + ] = J Y - - 2 i Z - ( W ) ,  (3.13) 
W + i  n W + i  

and this equation is to be solved for F+( W). 
Note that A is proportional to both the Reynolds number based on the mean free 

path and, since A = (717/2)4 u/a, to the Mach number M = U/a, where a is the velocity of 
sound and y the ratio of the specific heata. 
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The ranges of existence of the various terms in (3.13) are indicated in figure 1. 
It is assumed that f(x) is bounded for x --f co, so that F+(x) - e--Ud* and P+(w) 
exiets for T > - iU/2v. Clearly u + 0 aa x --f - 00, so that u- - euzl*, x + - 00, 
and hence K ( w )  converges for T < iU/2v .  The former msumption is based on the 
faot that f(x) is proportional to the shearing stress on the plate (equation (2.8)), 
and since the slip solution must reduce to the zero-slip case far downstream, it 
follows that f(x) 3 0 as x + 00. We use 9( W) for imaginary part of W and from 
the ranges of validity of the terms of equation (3.13), as depicted in figure 1, 
we see that the transformed equation holds where 

- 1 + A  > 9 ( W )  > -1. (3.14) 

4. Resolution of the transformed equation 

in the upper and lower half planes. To this end we need to write 
To solve (3.13) forF+( W) it is necessary to write it as the sum of terms analytic 

88 

2 W + i  w - i  4 
n A K (  W) = - tan-'- + iA - ( w+Ti) 

where K+( W) is analytic for 9( W) > - 1 and K-( W )  is analytic for 

9 ( W ) <  - 1 + A .  

There is a standard method for performing this factorization (see Noble 1968, 
p. 21). Thus we must consider 

d d 
h (W)  = - F K ( W ) l =  - l n K + ( W ) - -  h K - ( W )  dW dW 

(4.3) 
(2/n) {A/W'2+ A2)}-i( W'-  2i)-*W'-Q 

(2/n) tan-' ( W'/A) - iA - ( W' - 2i)a W ' a  ' 
- - 

where W' = W + i. Application of Cauchy's theorem to a rectangular region 
lying within the strip of regularity of h( W), a > f( W) > b, yields 

O0+* h(8) 
h (W)  = -. 

2na '1 - w + a s - W  - 

where the h t  and second members of the right-handside are regular inY( W) > b, 
9( W) < a, respectively. Hence we have 

m+ib h(8) d ds, 
2ns ' S  -m+*s- - w 

d 
In R+( W )  = -. 

(4.4) 

The strip of regularity of h( W ) ,  b c Y( W )  < a, in fact coincides with the region 
of analyticity of R( W ) ,  - 1 < 4( W )  < - 1 + A ,  since by suitable choice of the 
branches of ( W + i)* and ( W - i)i we can ensure th t  the denominator of h( W) in 
equation (4.3) is non-zero everywhere. 
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The singular points of h( W) are at W' = +_ iA, 2i, 0, and the paths of intap. 
tion for the integrals in (4.4) lie between W = 0 and W = iA, as seen in figure 1. 
The contour integral for (d/dW') lnK+( W')  can be deformed into a path d o q  
the cut from W' = 0 to $(W) = -a, figure 2. After reduction in the limit 
A -+ 0, this integral becomes 

FIGURE 2. Contour integral for reeolution of the transformed equation. 

The roots of the quadratic form in the denominator of the integrand are given by 

2+A2 4i 
= 4 + n a  ~ ( 4  + ~ q  9 

and in terms of these parameters we find that (4.5) yields 

(4.6) 

In {&A2( 1 - i W)} 1 1 1 + -. d 
--*K+(W)} = -~ aw 2 ( W + i )  4 m  ( W + i a 1 ) ( W + i a 2 )  

+2n iw-- 4i 
(2+A2) iW-Aalni - [i w + i (1  + ~ 2 ) t 1 } ] ,  ( 1 :) - A( 4 + A,) ( 1 + p)+ 

(4.7) 
The integrated form of (4.7) is 

-W In +A2 (1 + t )  K + ( W )  = (I-iW)-+exp -- " nA(4+A8) f -1 (t+al)(t+aZ) 

x [ - A'( 4 + A,) W 2  - 2iA2( 2 + As) W + 4 + A']i 

ae]. (4.8) 
1 1  oosh-'-iw (2 + Az) cosh 8 + A2 

(cosh 8 + al) (cosh 8 + a,) 
A similar integration can be carried out to find K-( W), or more simply, it can 

be found using the relation 
K+(W) K J W )  = __- 
K ( W )  * 
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Once R( W) has been resolved into parts regular in the upper and lower half 
planes, we can write the transformed equation (3.13) as 

W + i  - 2i%( W )  R-( W), J - 
F+( W) R+( W )  - 

(4.9) 

in which the left-hand side is regular for J( W) > - 1 and the right-hand side 
is regular for 9( W) < - 1 +A. Hence, both sides having the common region of 
validity, - 1 < J( W )  < - 1 +A,  each must be equal to the same entire function 
of W. Moreover, K-( W) + constant as W --f 00, and, since ~ ( x )  approaches a 
constant value aa x + 0, G-( W) - I/  W for W --f 00; hence the right-hand side of 
(4.9) approaches zero algebraically as W + co, and the entire function represented 
by (4.9) must in fact be zero. Thus finally we have 

(4.10) P+(W) = J- 2 2v K-( - j L  
n ( W + i ) K + ( W )  

dW U 
F+(x) = - K-( - i) a d  n 

dW, (4.11) n 

since, from (4.1) and (4.2), 
w + i  4 

K - ( - i ) =  lim - K  (W) - 
W+-i  [ + ( - 2 i ) I .  

Equation (4.11) represents the full solution of the integral equation and hence 
of the problem. However the integration indicated in (4.11) cannot, in general, 
be carried out, and therefore it becomes necessary to study approximate forms 
of the solution for particular ranges of the variables. Thus, it is possible to 
obtain expressions valid for small and large values of x, using Tauberian theorems 
that relate a function and its transform for large and small values of its argument. 

5. Asymptotic forms of the solution 
We obtain an approximation to F+(x) for large positive x by studying the 

expansion of F+( W) about its singularity with largest imaginary part (cf. Cars- 
law & Jaeger 1947, p. 279). This is at W = - i, i.e. at W‘ = 0. From the solution 
(4.8) for K+( W), we can derive the expansion 

1 = - 1 ( - iw, ) -4  
W‘K+(W’) 4 2  

A 
2n 

( - iW’)i - - i W‘ In ( - +A2 i W’) - +A2 i W’ + . . .] (5.1) 

for small W’. So, from (4.11), we get 

dW’. exp ( - iUxW‘/2~)  U 
n W ’ K + ( W T  

F+(x) = - -e-Uz/” 
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There are a number of Tauberian theorems that relate a transformed expansion 
to its original (see Doetach 1937, p. 265), but bemuse of the mixed nature of the 
terms in (6.1) none of these theorems applies directly. However, they can be used 
formally, and the result is 

(6.3) 

where C = Euler’s constant = 0.577 . . ., for x + 00. That (5.3) is indeed the correct 
expansion ca.n be proved directly from (5.2) (Carlsaw & Jaeger 1947, p. 280). 
The procedure is to integrate along a contour of the type indicated in figure 3, 
in which the horizontal path is a distance el -= A above the real axis, and we choose 
the radius of the circular path about the singularity at W = 0 to be S J X .  In 
the limit x + a, the integrals dong the horizontal portions and about the circle 
vanish asymptotically and the vertical path yields the contribution written in 
(5.3). This method may be applied to obtain any further number Of terms in the 
asymptotic expansion for large x. 

FIGURE 3. Integration path for the asymptotically large x expansion. 

The other expansion required is for small positive x and this we obtain by 
investigating the transformed function for large W. We wil l  evaluate the leadmg 
term 0nly.t From (4.8) we get, for I Wl + 00, J ( W )  > 0, 

1 [ 1 2 jm In&P(l+t) &] K+( W) - T [A2(4 + A 2 ) ] i e ~  - - -- 
s nA(4+Az) -1 (t+a,)(t+%) 

d8] .  (6.4) 
(2+A2)cosh8+A2 [ - A(4 Az) /im ( G h  6 + al) (cosh 8 + az) 

Moreover, we find on integration that 

t Cloeer atudy ahom that difficulties may occur in obtaining further t e rn  of the mnea 
if A is large (the boundary-layer limit), due to non-uniformities when W + a, A -+ a. 
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and 
O9 (2+A2)cosh~+A2 

-~ ae] 1 1  
eXP [ -; A(4 + Aa) / in  (cosh-6 + al) (cosh 8 +a2) 

A [*-tan-'(WA)]/2* - -  
((4 + A2)*) 

= ((4 + A2)t) 

A fn-tan-YWNll2n 

where L2(z) is the dilogarithmic function 

91 

Henm, altogether, in the limit I WI + 00, we have 

K+(W)  - -iA[ A )+exp[ -- na-ln 1 " l  >( (4+A2)* A )"sin (ntan-I:)]. (6.6) 
(4 + As)* 

Using the inversion formula (5.2) and the appropriate Tauberim theorem 
(Doetsch 1937, p. 269), (6.5) yields the result? 

Finally, we can obtain an expansion of P+(z) valid for small values of A. !Thus, 
from (4.8), we obtain the following expression for A -s 0, 

Substituting into (6.2) this gives 

approximately, where 5 = i W. The path of integration lies to the right of the 
mngularity of the inbgrand at 5 = 0. Numerical integration of (5.7) haa been 
carried out for a series of valuee of the relevant parameter Ux/2vA = z/(a,h), 
and the results will be discussed in the next section. 

6. Shearing force and slip velocity 
The approximate expressions developed in $6 enable us to find the plate 

shearing stress (and hence the slip velocity) directly without further integration, 
using the reault given in $ 2; namely that 

t We remark here that the exponential term in (5.6) is never far from unity, end, to 
Within 8pproxirnetely 6 %, F+(O) = 2Uh-'(A/(4+ h')*}h. 
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First, for x + co, we get from (5.3) 

in which we have replaced A by a,( UA/v), and have evaluated the numerical 
coefficient in the laat term. Defining 

we get C,- 2v 

Slip boundary-layer theory gives the following expression for the skin-friction 
coefficient (Mirels 1952) 

so that the full Oseen equations yield a correction to the zero-slip skin-friction 
coefficient of the first order in A, whereas the lowest-order term in the boundary- 
layer result is of order h2. In fact the former term is dominant for Uh/u < 1, but 
becomes negligible for Uh/u -+ co. Since h a M / (  U/v), where M is the Mach 
number of the free-stream flow, an alternative statement is that the additional 
terms arising from use of the full equations of motion are important in estimating 
the plate shearing stress for small Mach numbers, while for M + 00 boundary- 
layer theory gives the correct value.? Within the range of applicability of the 
present analysis, since we are treating the incompressible caae (low Mach number), 
it therefore follows that boundary-layer analysis does not give a satisfactory 
estimate of the shearing stress, even far downstream, where slip effects are small 
(but not negligible). Since the slip condition is u' = A(au/ay), y = 0, similar 
statements apply to values of the velocity at the plate surface. 

For x + 0 we have the result (equations (5.6) and (6.1)) 

(6.5) . I  

and c,+?[ A )".xp[-' -(---)"~in(ntan-~;)]. 1 A  (6.6) 
A (4+h2)4 nn=ln2 (4+A2)4 

For A -+ a, (6.5) yields 

in agreement with boundary-layer theory (Mirels 1952), and for A +O 

u + u = u  

so that in the limit of zero slip we regain the normal result, namely c, -+ co aa 
x + 0. 

t The general conclueion, that with a slip-boundary condition the boundary-layer 
equationa become valid in the limit M or Uhlv -+ 00, can in fact be deduced from the 
complete O w n  equations (2.1). 
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For small A (i.e. for smal l  values of the Mach number M) we can present results 
valid for all x .  Thus from (6.7),  using (6.1),  we obtain the approximate expression 
for CL 

The relationship (6.8) between n(&A)*c, and Ux/2vA = x/2alh evaluated by 
means of a high-speed electronic computer is plotted in figure 4. Shown also is the 
zero-slip result, for which n(+A)i c, = ,./n(x/2a1A)-4. Increase of the shear above 
the zero-slip value for x/2a1h greater than about 0-3 should be interpreted as a 
result of viscous interaction effects of order higher than included in boundary- 
layer theory rather than as a direct consequence of slip. The boundary-layer result 
is approached we let A (or the Mach number) approach infinity, and in this 
limit the shear force is always less than the no-slip shear. 

7. Displacement thickness 
The total displacement thickness 

m u  6* = -lo 
is infinite in the case of any semi-infinite body. However, we can flnd the dis- 
placement thickness corresponding to the transverse wave part of the solution 
v, + v: (equation (2 .5)) ,  and in fact this gives a boundary-layer profile, the poten- 
tial flow about which yields the longitudinal wave vl. We should make it clear 
that the boundary layer calculated in this way is not a line of demarcation be- 
tween potential and rotational viscous flow, since at the leading edge, near or on 
the plate, neither potential nor vorticity waves dominate. Moreover, aa will be 
shown, this displacement thickness is zero ahead of the plate, while in fact there 
is a spreading of vorticity upstream of the plate, as indicated by the fundamental 
solution v, for the vorticity (equation (2 .5)) .  

From (2.5) and (2.6) we have for the displacement thickness defined in this way 

r, = ((z-tt)~+y2}4 where 

For x < 0 this is zero, while for z > 0 we have 
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Asymptotic forms of 6* for x + 00 and x +- 0 can be obtained using the resulta 
derived in Q 5. For x -+ 00 care haa to be exercised in evaluating the integral, and 
to avoid convergence difficulties, we write 

Using the expansion (5.3) this yields 

0-04)+ ...) (x+m), (7.6) 

and far enough downstream this gives the usual boundary-layer result (Schaaf 
& Chambrk 1967), namely that the boundary-layer thickness is a mean free path 
thinner than the zero-slip value. 

The expansion for 6* near x = 0 is obtained directly from (5.6): 

again agreeing with boundary-layer theory as A +- 00 (Schaaf & Chambr6 1957). 

8. Experimental evidence 
As has been discussed in Q 1, it appears essential that experimental checks on 

slip-flow analyses be carried out under low subsonic incompressible-flow condi- 
tions. Moreover, the present theory has been shown to give results essentially 
different from past work, baaed on boundary-layer approximations, in the low 
Mach number range. 

Unfortunately, very little experimental work has been carried out in thie 
rBgime and to the author’s knowledge the only relevant study is that carried out 
by Sherman (1952) in measurements of the drag of flat plates in a low-density 
subsonic airstream. To be able to compare our results with suchexperiments, an 
integration of the expression for the shearing stress on the plate has to be made. 
Such an integration haa been carried out graphically for the case A small (low 
Mach number) from figure 4. The results are shown in figure 5 in terms of a 
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0 0  100 
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FIGURE 4. Skin-friction coefficient distribution for A smd. 

FIGURE 6. Drag coefficient variation for A mall. 

Reynolds number RL based on an integration length from x = 0 to x = L along 
the plate and a drag coefficient defined by 

It will be seen from the figure that significant departures from the no-slip 
cases are not predicted until RJM < 4 approximately. In Sherman’s experimen- 
tal work the smallest value of RL/M was 6 and thus marked effects of slip should 
not be visible in his low-speed data. In  view of experimental errors, the correc- 
tions necessary to allow for compressibility and for the finite length of the plates 
(Kuo 1963) and for the approximations of linearized theory (Lewis & Carrier 
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1949), no observations as to the validity of this analysis or those of other slip 
flow theories can be made. It is desirable and probably essential not only that 
experiments at lower Reynolds numbers be made, but that experiments on the 
local modifications of the flow due to slip (such as the change in plate shawiq 
stress c,) be undertaken in order that a definite conclusion be reached. 
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